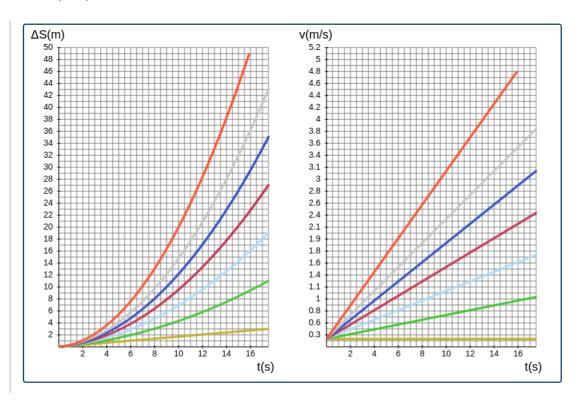
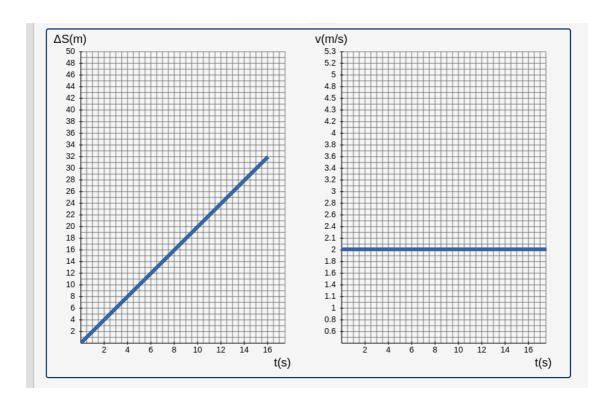

a. Representación del espacio recorrido por un móvil que se mueve con <u>velocidad</u> <u>constante.</u>



La velocidad que lleva es de v = 2 m/s

Medida	Hasta el instante t(s)	Espacio recorrido = $\Delta S = v \Delta t = v \cdot (t-t_0)$
1	$t_o = 0 s$	
2	t ₁ = 4 s	
3	$t_2 = 8 \text{ s}$	
4	t ₃ = 12 s	
5	t ₄ = 16 s	

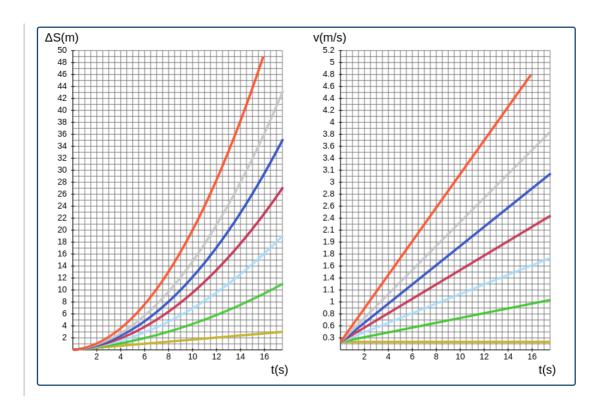
b. Representación del espacio recorrido por un móvil que se mueve con <u>aceleración</u> <u>constante.</u>


La velocidad que posee el móvil en el instante inicial es de $v_o = 0.15$ m/s.

La aceleración que posee es constante en el tiempo: $a=0.05~\text{m/s}^2~$ ¿A qué color corresponde? . Calcula los resultados analíticos con la tabla siguiente y compara con los valores del gráfico

Medida	instante t(s)	Velocidad; $v_f = v_o + a \cdot (t - t_o)$	Espacio recorrido = $\Delta S = v_0 \Delta t + \frac{1}{2} a \cdot (t - t_0)^2$
1	t _o = 0 s		
2	$t_1 = 4 \text{ s}$		
3	$t_2 = 8 \text{ s}$		
4	t ₃ = 12 s		
5	t ₄ = 16 s		

a. Representación del espacio recorrido por un móvil que se mueve con <u>velocidad</u> <u>constante.</u>



La velocidad que lleva es de v = 2 m/s

Medida	Hasta el instante t(s)	Espacio recorrido = $\Delta S = v \Delta t = v \cdot (t - t_o)$
1	t _o = 0 s	$\Delta S = 2.0 = 0 \text{ m}$
2	$t_1 = 4 \text{ s}$	$\Delta S = 2 \cdot (4 - 0) = 8 \text{ m}$
3	$t_2 = 8 \text{ s}$	$\Delta S = 2 \cdot (8 - 0) = 16 \text{ m}$
4	t ₃ = 12 s	$\Delta S = 2 \cdot (12 - 0) = 24 \text{ m}$
5	t ₄ = 16 s	$\Delta S = 2 \cdot (16 - 0) = 32 \text{ m}$

b. Representación del espacio recorrido por un móvil que se mueve con <u>aceleración</u> <u>constante.</u>

La velocidad que posee el móvil en el instante inicial es de $v_0 = 0.15$ m/s.

La aceleración que posee es constante en el tiempo: $a=0.05~\text{m/s}^2~$ ¿A qué color corresponde? . Calcula los resultados analíticos con la tabla siguiente y compara con los valores del gráfico

Medida	instante t(s)	Velocidad; $v_f = v_o + a \cdot (t - t_o)$	Espacio recorrido $\Delta S = v_o (t - t_o) + \frac{1}{2} a \cdot (t - t_o)^2$
1	t _o = 0 s	v (t=0 s)= 0,15 m/s	$\Delta S = 0 \text{ m}$
2	$t_1 = 4 s$	$v (t=4 s) = 0.15 + 0.05 \cdot (4-0);$ v (t=4 s) = 0.35 m/s	$\Delta S = 0.15 \cdot (4-0) + \frac{1}{2} \cdot 0.05 \cdot (4-0)^2$ $\Delta S = 1 \text{ m}$
3	$t_2 = 8 s$	$v (t=8 s) = 0.15 + 0.05 \cdot (8-0);$ v (t=8 s) = 0.55 m/s	$\Delta S = 0.15 \cdot (8-0) + \frac{1}{2} \cdot 0.05 \cdot (8-0)^{2}$ $\Delta S = 1.8 \text{ m}$
4	$t_3 = 12 \text{ s}$	$V (t=12 s) = 0.15 + 0.05 \cdot (12 - 0);$ V (t=12 s) = 0.75 m/s	$\Delta S = 0.15 \cdot (12 - 0) + \frac{1}{2} \cdot 0.05 \cdot (12 - 0)^{2}$ $\Delta S = 5.4 \text{ m}$
5	t ₄ = 16 s	$v (t=16 s) = 0.15 + 0.05 \cdot (16 - 0);$ v (t=16 s) = 0.95 m/s	$\Delta S = 0.15 \cdot (16-0) + \frac{1}{2} \cdot 0.05 \cdot (16-0)^{2}$ $\Delta S = 8.8 \text{ m}$